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Cell-dynamics modeling of oscillator systems
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We propose a computationally efficient discrete model with short-range coupling for a system
of limit cycle oscillators. Depending on the intensity of the coupling and of the attraction to the
limit cycle, the system exhibits synchronization, amplitude death, or incoherence. We consider the
behavior of a pair, a chain, and a two-dimensional lattice with randomly distributed frequencies.
The onset of synchronization in the two-dimensional lattice is analyzed as a nonequilibrium phase

transition.
PACS number(s): 05.40.+j, 87.10.+e

Systems of coupled limit cycle oscillators have been in-
tensively studied by scientists due to its wide application
in physical [1], chemical [2,3] and biological systems [4,5].
One of the main points is the possibility of a collective
behavior by means of phase locking or synchronization
among oscillatory elements. The phase model proposed
by Kuramoto [2] has been one of the most frequently used
tools to investigate the possibility of a macroscopic syn-
chronization [6-11] due to its simple and generic form.
Despite its simplicity, we find that this model is inade-
quate for large scale simulations and our main purpose
in this paper is to propose a computer efficient model for
systems of coupled limit cycle oscillators.

There are several nonlinear equations presenting Hépf
bifurcations to a stable limit cycle, but we would like
to consider a generic system in which details have been
washed away. In this spirit, we mention two basic models:
(i) The phase model, which results from the averaging of
weakly coupled equations of motion with a limit-cycle
attractor and (ii) the Ginzburg-Landau equation, which
is a partial differential equation for an oscillatory field
near the Hopf bifurcation [2,12]. Here we propose a cell-
dynamical system model which is a model discrete in
space and time, for the amplitude of oscillation.

The dynamics of coupled limit-cycle oscillators is very
rich. Here we would like to focus on two aspects of the
problem: amplitude death and synchronization. Am-
plitude death, or the stabilization of the rest state, is
a phenomenon observed in systems of coupled differen-
tial equations with mean field coupling, [3,13,14], and
appears whenever coupling strength and attraction to
the limit cycle are of the same order for a sufficiently
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wide frequency distribution. Because the component os-
cillators in nature would never possess identical natu-
ral frequencies, mutual synchronization appears to be
the unique possible mechanism for producing and main-
taining macroscopic rhythmicity. In this case, we have
macroscopic clusters of oscillators with a common asymp-
totic frequency, characterizing an oscillatory behavior in
a larger scale. Many authors have suggested that the
onset of synchronization at some critical finite coupling
strength could be considered a nonequilibrium phase
transition if the phenomenon is possible in the thermo-
dynamical limit [4,6,8,9,11].

A cell-dynamical system is a map from a set of discrete
spatial patterns to itself. The name cell-dynamical sys-
tem actually extends to all discrete time-space models,
like cellular automata and coupled map lattices, so we
should point out what is different in our model. Regard-
ing cellular automata, our model considers continuous
pattern variables with a time evolution given by a func-
tion chosen to have the correct low. The exact form of
this function is not important, so, in this sense, our model
differs from coupled map lattice models in which the pre-
cise form of the map is stressed. Cell-dynamical system
models have been extensively used to study spatial struc-
tures in far from equilibrium systems [15-19]. The main
feature of this kind of approach is to provide compu-
tationally efficient models that give the correct pattern
formation dynamics. The construction of cell-dynamical
system models consists of three steps: (i) construction
of a local map that describes the local fluctuation of the
system without any constraints, (ii) imposing a penalty
to spatial discontinuous changes, and (iii) application of
auxiliary conditions (say, symmetry, conservation, etc.).

Here we consider that each cell in the lattice represents
a mesoscale volume, which has oscillatory behavior. It
is clear that each cell may represent an average over a
finer scale. We describe the dynamics of each limit cycle
oscillator by a complex continuous field z(n,t) defined in
cell n in the (discrete) time ¢t. The dynamics for each
oscillator is then given by

z(n,t + 1) = F(2(n,t)), (1)
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where the function F is defined as
F(Aw,2) =e“f(A,2), 0<w<2m. (2)

The exact form of f is not important, as has been pointed
out before [15,16]. For example, consider two possible
forms

fa(A,2) = A 1+|z|2(A2—1)’ (3a)
fo(A,2) = A|Z7| tanh(|z|). (3b)

Seeing the behavior of these maps is easy if we write
z = Re*®. We want that, asymptotically, R(t) = R(t +
1) = R;. For f, we have that, for A > 1, there is a stable
limit cycle of radius R; = 1. For A < 1, the asymptotic
situation corresponds to R; = 0, that is, the rest state is
stable. The same analysis can be made for f;, in which
case for A > 1 the limit cycle is given by the condition
Atanh(R;) = Ry, and for A < 1 the rest state is stable.
In both cases we have a Hopf bifurcation at A = 1. We
choose to work with f, because it gives R; independent
of A, which is convenient but not necessary, and because
it is not singular at the origin. As will be seen below,
coupling between oscillators can stabilize the rest state,
and then f;, will diverge.

To accomplish step (ii) we add a stabilizing term that
penalizes gradients and couples cells diffusively. Consid-
ering that relaxation is faster than diffusion we get

z(n,t +1) = F(z(n, 1)) + D[(F(2(n, 1)) = F(2(n,1))],
(4)

where ((F')) is an isotropic spatial average. Step (iii) is not
necessary, and Eqgs. (3a) and (4) define our model. We
should point out that the Euler scheme used in the phase
model simulations [6,10,11], leads to a cell-dynamical
system model for the phases only. It is important to
stress that a cell-dynamical system is not a discretization
of partial differential equation, although the opposite is
true. The discretization of a partial differential equation
gives a‘cell-dynamical system that is often inefficient and
may generate a dynamical behavior different from the
one expected from the continuous formulation. A cell-
dynamical system is an ab initio modeling with the aid
of intuitive ideas about the system.

In our model D is a measure of the coupling intensity
and A is a measure of the attraction to the limit cycle.
If a group of oscillators is asymptotically phase locked,
they will oscillate with a common frequency. To identify
this situation we define the asymptotic frequency (n)
of the oscillator in site n as usual [2]

n) = lim S Bt +1)-0m0],  (5)

T is the number of time steps after discarding the tran-
sient.

Before analyzing a chain of oscillators we consider a
pair of coupled oscillators with different frequencies:

Zj(t + 1) = F(A, w,-,zj) + D[F(A, wk,zk)
—F(A,wj,zj)], j,k = 1,2. (6)

We can analyze the asymptotic state of the pair as we
vary A and D by measuring R; and Q;. We find three
possibilities: (a)R; # 0 and 23 # Q2, which we call
the nonsynchronized state, (b)R; = 0, corresponding to
amplitude death, and (c) R; # 0 and Q; = Q3, which we
call the synchronized state.

This result is shown in Fig. 1 where we plot the A x D
phase diagram for two oscillators with frequencies w; =
w/6 and w = 7w/2. In the synchronized state z; and z;
have the same asymptotic time-independent frequency
defined by (5), but different phases.

The region corresponding to amplitude death can be
calculated by a linear stability analysis of the state
(21,22) = (0,0). The linearized equations are

zj(t+1) = A(1 — D)e™iz;(t) + ADe™* 2 (t),

jvk =1,2. (7)

The Jacobian matrix can then be easily diagonalized.
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FIG. 1. Phase diagram for a pair of coupled oscillators with
frequencies /6 and w/2. A is a parameter that measures the
attraction to limit cycle and D is the coupling strength. The
nonsynchronized and synchronized regions correspond to pa-
rameter values such that the oscillators have different and
equal asymptotic frequencies, respectively. In the region la-
beled as death, the rest state is stable. The boundary of this
region can be calculated by a linear stability analysis.
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FIG. 2. The amplitude of oscillation in a chain with peri-
odic boundary conditions, A = 1.1, and different values of the
coupling strength. R is the amplitude of oscillation along the
chain. Amplitude death occurs for D near 0.5.

The stability of the rest state requires that both eigenval-
ues have absolute value smaller than one. The calculated
line in Fig. 1 corresponds to the first eigenvalue that be-
comes unstable.

We consider now a one-dimensional array defined by
(4) with periodic boundary conditions. Each oscillator
is coupled to its nearest neighbors. First we choose a
uniform distribution of frequencies between 0 and 7, and
z(t = 0) = 1. The length of each run is the number of
iterations after discarding the first 3000 iterations. After
3000 iterations, we read the values of R(n,t) and 6(n,t).
Again we find the possibility of amplitude death. In Fig.
2 we plot the value of R(n) along the chain, for A =1.1
and different values of D. To see the role of the frequency
spread in the amplitude death, we choose different widths
A for the frequency distribution, and read the values of R
after 3000 iterations for D = 0.5 and A = 1.1. The results
can be seen in Fig. 3. We see that by increasing the
frequency difference among oscillators, the stabilization
of the rest state is favored. For A = 7, R = 0 everywhere
along the chain.

To investigate the possibility of synchronization, we
choose a uniform distribution of frequencies and calcu-
late Q(n) for each oscillator after 3000 iterations. For
example, consider a distribution centered in w = 1.0
with width A = 0.1 and A = 2.0. Depending on the
coupling intensity, the whole chain is phase locked. Fig-
ure 4, shows the values of the natural frequencies w(n)
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FIG. 3. Amplitude death as a function of the frequency
spread. Here we plot the amplitude of oscillation, R, for a
chain of 100 oscillators with periodic boundary conditions and
a uniform distribution of frequencies with widths =, %’-’, 35
and §. The other parameters are D = 0.5 and A = 1.1. As
the frequency spread is increased, the rest state is stabilized.

and asymptotic frequencies Q(n) for D = 0.1,0.3,0.5,
and 0.7. We observe the formation of frequency plateaus
that grow with increasing D. This kind of structure has
already been reported in rotor chains [6] with Gaussian
distribution of frequencies. There, the tails of the distri-
bution prevent the formation of a single cluster in infinite
chains for finite coupling strength. This effect is observed
here when we plot the asymptotic frequency of each os-
cillator in the chain for different values of the natural fre-
quency spread A as seen in Fig. 5. For A=0.05 and 0.1,
the chain is practically synchronized while for A=0.5 and
1.0 clusters are oscillating with different frequencies. Os-
cillator death appears for A=1.5. Oscillators with R=0
are represented as having Q=0.

For two-dimensional lattices we couple each oscillator
to its first and second neighbors by defining the average

(F)) as:
(F) = £ S Fa + 35 3 Faw, ®)
N NN

where N represents nearest-neighbor cells and NN, next
nearest-neighbor cells. We study the macroscopic syn-
chronization in this system by means of the frequency
order parameter r defined by Kuramoto [2]:
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FIG. 4. Effect of the coupling strength in synchronization.
Here we plot the asymptotic frequency Q2 along a chain of
100 oscillators with periodic boundary conditions and uni-
form distribution of frequencies centered at 1.0 with width
0.1, A = 2.0, and D = 0.1, 0.3, 0.5, and 0.7. The initial
condition z is z(t = 0) = 1. The length of the run is 3000
iterations, after having discarded 3000 iterations. The solid
line corresponds to the asymptotic frequency.

r=— (9)

where N is the oscillator population and N, is the num-
ber of oscillators in the largest synchronized cluster. If,
for finite coupling strength, r is O(1) in the limit NV — oo
we say that there is macroscopic synchronization, which
can be interpreted as a non-equilibrium phase transi-
tion from an incoherent to a coherent or ordered time-
dependent state [2,6].

To decide whether a transition exists, we have calcu-
lated (r) in ensembles of 20 samples of L x L oscillators
as follows. The native frequencies were chosen from a
Gaussian distribution centered in 1.0 with width 0.1, the
initial condition is z = 1.0, A = 2.0 and we consider pe-
riodic boundary conditions. Equation (4) was iterated
1000 times, 500 of which were discarded as a transient.
The asymptotic frequencies were then calculated and the
frequency clusters were analyzed with an algorithm used
in percolation problems [20] as in [11]. Two oscillators
were considered synchronized whenever the differences in
their asymptotic frequencies were less than 0.0001. This
procedure was then repeated for different values of D.
The resulting curves of (r) versus D for different lattices
sizes are plotted in Fig. 6. The phase transitionlike be-
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FIG. 5. The asymptotic frequency 2 of a chain after 3000
time steps for frequency distributions of different widths,
D=0.8 and A=1.1. Dead oscillators are represented by Q=0.
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FIG. 6. Frequency order parameter r averaged over 20 sam-
ples as a function of the coupling strength D. The native fre-
quencies are chosen from a Gaussian distribution centered in
1.0 with variance 0.1. The asymptotic frequencies were cal-
culated after 1000 iterations, 500 of which were discarded as
a transient.
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havior observed with the phase model in two-dimensional
lattices [10,11] is also present here: as the system size is
increased, the curves converge to a single curve, but the
convergence is better observed with this model. There-
fore, we confirm that frequency order is possible in the
thermodynamical limit for two-dimensional systems.

As to the efficiency of the model, we compare the CPU
time used for obtaining a curve in Fig. 6 to the time
required to draw an equivalent curve using the phase
model, as in [11]. The simulation of a 256 x 256 lattice
with the CDS model required the same amount of time
as the simulation of a 96 x 96 lattice of rotors, using the
same Cray Y-MP computer. Considering that with the
cell-dynamical system model we have information about
the phase and the amplitude, we conclude that it is a
more powerful model for simulations.

We now push the analogy with equilibrium phase tran-
sitions even further and try to determine the order of
this transition. Daido [8] have suggested that the on-
set of macroscopic synchronization could be compared to
a second-order phase transition in equilibrium coopera-
tive systems, but he has not explicitly determined the
order of the transition in systems with short-range cou-
pling. In temperature-driven equilibrium first-order tran-
sitions there is a discontinuity of the order parameter at
some finite value of the temperature, in contrast to a
smooth variation in second-order transitions. This is the
expected behavior in infinite systems. The effect of a fi-
nite lattice is to round and shift the transition region,
making it difficult to locate and to classify the transition
[21]. A more precise tool to identify the order of the tran-
sition is the fourth-order reduced cumulant of the order
parameter ¥ [22,21] defined as

()¢

Ur=1- 3592

(10)

The label L is a reminder of the finiteness of the system.
In the thermodynamic limit U, = % in a second-order
transition, and passes through a minimum at the tran-
sition temperature in a first-order transition. To under-
stand this behavior, suppose a Gaussian distribution for
¥. A continuous transition corresponds to a dislocation
of the center of the Gaussian and to alterations of its
width, so we expect Gaussian averages all the time. In
a discontinuous transition there is phase coexistence, so
at some point we have the superposition of two Gaus-
sians centered at the values corresponding to each phase
which causes the deviation from the single Gaussian value
-g—. This is an oversimplified explanation, but it gives the
idea behind the quantity Uy. The fourth-order cumu-
lant has been successfully used to determine the order
in many equilibrium phase transitions (see, for example
[22,23]). We have calculated Uy, for the samples plotted
in Fig. 6. As defined in (10), the quantity Uy is not
well defined numerically when ¥ — 0, which is the case
here. To overcome this difficulty we follow [23] and add
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FIG. 7. Fourth-order reduced cumulant of the order pa-
rameter as a function of the coupling strength for lattices of
different sizes. The presence of a minimum suggests that the
transition is of first order.

an arbitrary constant to all values of r, that is, we rigidly
shift the v distribution. The results can be seen in Fig.
7. The presence of a minimum shows that we have a
first-order transition.

In summary , we have proposed a discrete model for the
dynamics of the amplitude and phase of coupled limit-
cycle oscillators. The model is computationally efficient
and specially adequate for vector compilers, which are
important qualities when one needs to investigate the
asymptotic behavior of large systems. With this model
we observed the phenomena of amplitude death and syn-
chronization. Analysis of two-dimensional lattices indi-
cated that there is a nonequilibrium phase transition be-
tween a nonsynchronized state and a synchronized state,
possibly of first order.
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